
rf!J Pergamon
Int. 1. Solids Structures VoL 34, Nos 31-32, pp. 41 (I [-4125, 1997

Ie· 1997 Published by E!sevin Science Lld
All rights reserved. Printed in Great Britain

00207683/97$1700 + .00
PII:S002o-7683(97)OOOl6-4

THREE-DIMENSIONAL INTERACTIONS OF A
HALF-PLANE CRACK WITH POINT FORCES,

DIPOLES AND MOMENTS

M. KACHANOV and E. KARAPETIAN
Department of Mechanical Engineering, Tufts University, Medford. MA 02155, U.S.A.

(Received 8 February 1996; in revisedfarm 9 December J996)

Abstract-Closed form solutions in terms of elementary functions are derived for stress intensity
factors along the edge of a half-plane crack induced by point forces, dipoles, centers of expansion
and moments. Locations and orientations of these "stress sources" are arbitrary. The solid is
assumed to be either transversely isotropic (with the crack parallel to the plane of isotropy) or
isotropic. If) 1997 Published by Elsevier Science Ltd.

1. INTRODUCTION

Stress intensity factors (SIFs) induced on a half-plane crack by point forces, dipoles,
moments, centers of dilatation and rotation are derived in elementary functions. Positions
and orientations of these stress sources with respect to the crack are arbitrary. The material
is assumed to be either transversely isotropic (with the crack plane being parallel to the
plane of isotropy) or isotropic.

Aside from being of importance of their own, such solutions are of interest for
applications, since the mentioned stress sources may, under certain conditions, model
defects like microcracks, cavities, foreign particles, dislocations, etc. The importance of
these stress sources is also due to the fact that, they represent an arbitrary system of forces
distributed in a small volume V: at distances from V much larger than the size of V, the
displacement and stress can be represented, to within small values of higher order, as a sum
of the fields generated by the resultants (principal vector, resultant moment and three
mutually orthogonal dipoles), see discussion of Karapetian and Kachanov (1996).

The present article continues the work of Karapetian and Hanson (1994) and
Karapetian and Kachanov (1996) on a circular crack. We utilize recent results of Fabrikant
et al. (1993, 1995) where the elastic fields generated by a half-plane crack loaded by pair of
equal and opposite point forces applied at the crack faces were derived in closed form.
These results, coupled with the reciprocity theorem and with the representations of SIFs in
terms of the displacement discontinuities on crack faces (Fabrikant, 1989), allow one to
derive expressions in elementary functions for the crack opening displacements (COD) and
SIFs for a half-plane crack due to a point force, arbitrarily located and oriented. Using
these expressions, we solve the problem of interaction ofa half-plane crack with (arbitrarily
located and oriented) stress sources like dipoles, centers of dilatation, moments and centers
of rotation.

We note that, in principle, solutions for a half-plane crack can be obtained from the
ones for a circular crack by the limiting procedure, when the crack radius ---> eX). However,
the implementation of this procedure involves evaluations of indeterminate ratios, some of
which are very difficult. Although these difficulties can, in principle, be overcome (as
outlined in Appendix A on a simple example), it is more straightforward to analyze the
half-plane crack configuration as an independent problem.

In the expressions given in this work for displacements at point (x, y, z) and for SIFs
due to the stress sources applied at (x,y,z), it is assumed that z ~ 0 (upper half-plane).
Results for z < 0 follow from the symmetry relationsj(x,y, -z) =j(-x, -y,z) wherej
denotes any of the mentioned quantities (Kachanov (1993)).
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In the earlier literature on the half-plane crack, the most fundamental contribution is
due to Uflyand (1965), who used the integral transform techniques and obtained the
potential functions for a pair of normal and tangential point forces applied at the crack
faces. He considered both symmetric and anti symmetric arrangements of the point forces,
when the forces are either normal or tangential (and normal to the crack edge) to the crack
plane. However, his solutions were limited to computation of stresses in the plane of the
crack. In the case of symmetric and antisymmetric shear point forces parallel to the crack
edge, only a general outline for finding the potential functions was discussed by him. Full
stress and displacement fields due to a pair of equal and opposite normal point forces
applied at the crack faces were derived by Fabrikant and Karapetian (1994).

The SIFs (all three modes) due to point forces applied at the crack faces immediately
follow from Uflyand's work (1965). In the explicit form, they were given by Sih and
Liebowitz (1968). Kassir and Sih (1975) presented a summary of these results. along with
SIFs for the case when the forces are applied at the points (x = 0, y = o. ±.::-) above and
below the crack edge. Rice (1985a) derived the mode I weight function. from which the
expression for K, due to a point force normal to the half-plane crack and applied at an
arbitrary point in space immediately follows. (He also analyzed a more general configur­
ation, with a perturbed crack front line.) Bueckner (1987) discussed. in the context of
weight functions, the problem of finding SIFs along the edge of both circular and half­
plane cracks, induced by an arbitrarily located and oriented point force. but actual solution
was given only for the case of a pair of point forces at the crack faces (analyzed earlier by
Uflyand (1965) and Kassir and Sih (1975)). All these results are recovered in the present
work as special cases.

We also mention several results for somewhat related, but different problems. Rice
(1985b) and Hanson (1990, 1992) considered three-dimensional interactions of a crack with
a coplanar dislocation loop. Karihaloo and Huang (\ 989) considered the problem of half­
plane crack interacting with volumetric distributions of shear transformation strains.

2. DISPLACEMENT FIELD DUE TO A PAIR OF EQUAL AND OPPOSITE POINT FORCES
APPLIED AT THE FACES OF A HALF-PLANE CRACK (TRANSVERSELY ISOTROPIC

AND ISOTROPIC SOLIDS)

The solution of this problem (Fig. I) was given by Fabrikant et al. (1993, 1995) and
is used as a starting point in our work. It is transformed here to a somewhat simpler form,
as follows. The point forces are applied at Xu < O. Yo. ZIJ = ±0 where, without loss of
generality, we set Yo = O.

z

N

x

Fig. 1. The configuration of a half-plane crack loaded by a pair of equal and opposite point forces
applied at crack faces.



Interactions of half-plane crack

A. Transversely isotropic solid (crack plane is parallel to the isotropy plane xy)
A-1. For a pair of normal point forces N, the displacement field is:
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(1)

(2)

where Ib /'2, /3, m l , m2 are the constants introduced by Elliott (1948). They can be expressed
in terms of five transversely isotropic elastic constants Alb A 13 , A 33 , A44 and A 66 related to
the "engineering constants" E" En Ve , Vn and Ge (Young's and shear moduli and Poisson's
ratios) :

(3)

through the following equations: 13 = (A 44!A 66 ) I
2 and

(4)

where the first equality sign represents a quadratic equation for m having complex conjugate
roots m b m2 (such that m lm2 = 1) and the second equality sign determines rl and 12 that
can be shown to be complex conjugates (Ik = jl; are chosen in such a way that Re fk > 0).
The quantities Zk are defined as Zk = z!Yk (k = 1,2,3) so that ZI and Z2 are complex conjugates
and Z 3 is real.

The following combinations of elastic constants are also used in the text to follow:

H = (/1 +(2)A II

2n(A II A 33 -A73l
(5)

A-2. For a pair of tangential point forces (to account for their direction, they are char­
acterized by the complex quantity T = T,+ iTr ), we have

(6)

(7)

where an overbar denotes a complex conjugate quantity, a function with an overbar/(O is
understood as.f(O and the functionsj;_6(zk) == j;6(X, y, Zk; xo) are defined as follows:



4104 M. Kachanov and E. Karapetian

1[J~ (S)I!2 7 (h)J/2 = q ~ arctan T; - ~ ] arctan if;

J -2xo [1 (S)12 JT;J/3 = ~arctan - -~-
s -J7s /2 /2 +s

h {3 [(/2)112 (S)I/2J I}/4 = - -- 1- - arctan -. - ~-
s s S 12 12 +s

(8)

(9)

(10)

(11)

R2
+_

2 (h) J2;-[ - (1 2) (S)I!2f, =~ arctan - + ~ 0 L>:. -= - -= arctan -I
R1q R j q ~s s q 2

( )1 " r-:-

J
1 q - / I

+ ---=arctan - - Y _ IJq II S

j~ = 0 [ ~arctan (f)12 - lfiJ
q ~ q 1 2 +s

B. Isotropic solid
The above given results simplify in this case to the following expressions.

B-1. For a pair of normal point forces N:

N(1+v) {[2(1-V) Z2J (h) Z2 [ x o .. h.J}u. = +- arctan - + +-
. n2 E R j R 3 R 1 R 2 +h2 h Ix 2 +_2 R 2

I I 'v • ~ 1

N(1 +v) {1-2V [z (h) F¥2XIJ (S)1i2JU, + iuv = 0 -_- - arctan - - -_- arctan -/
n" E q R j R I S 2

B-2. For a pair of tangential point forces T:

l+v {[ (- v -) J }Uz = n 2ERe (1-2v) /2(Z) + 2_vh (z) -zj~(z) T

where the functionsh_lO(z) == f7_ IO(x, y, z; x o) are defined as follows:

(12)

(13)

(14)

(15)

(16)

(17)

(18)
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3~ (:5)1/2} Z ( h) Z (xo h)- . arctan - - -arctan - + +-
:5512 12 Ri R, Rf+h2 hJX2+Z2 Rf

+ XOZ [~ + _2_I + _v(_I__21_1 )J}
hJx2+Z2 :5 2-v II +q 2-v 12+S (/2 +S?

The following notations are used in all the formulas above:
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(19)

(20)

(21 )

R I = J(X-XO)2+ y2+ Z2, S = -(x+xo)-iy, q = x-xo+iy

h = J -2XO[(X2+Z2)112_X], I, = JX2+Z2_X, 12 = JX2+Z2+X. (22)

3. INTERACTION OF A HALF-PLANE CRACK WITH A POINT FORCE (TRANSVERSELY
ISOTROPIC AND ISOTROPIC SOLIDS)

We derive SIFs along the edge of a half-plane crack due to a point force applied at an
arbitrary point and having an arbitrary direction. We use the reciprocity theorem that
relates the displacements at some point (x, y, z) due to a pair of equal and opposite point
forces applied at the point C~o, Yo = 0, Zo ±0) of the crack faces (given in Section 2) to the
displacement discontinuity at this point of the crack due to a point force applied at (x, y, z).
We will also need representations of SIFs in terms of the normal displacement discontinuity
[uz ] and the tangential displacement discontinuity in the complex form L\. = [u,]+i[uvJ. A
similar representation was derived for circular crack of radius a by Fabrikant (1989) :

K] = _I_lim [uJ ,
8nH po~aJa- Po

(23)

where Cartesian coordinates x, y (with the origin at the crack center) are oriented with
respect to the polar coordinates Po, <Po of a point on the crack in such a way that <Po is
counted counterclockwise from the x-axis.

The representation of this kind for a half-plane crack can be obtained by calculating
the limit of (23) as a -> oc. This yields:

(24)

where x and y in the expression L\. = [uxl + i[uvl denote now the axes normal to and along
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x

y
Fig. 2. Dual systems of forces (Q" Q,., QJ and (To T,., lvi used in the reciprocity theorem.

the crack edge, respectively. Results for the isotropic solid are obtained by setting
H = (1- v2)/(nE), G] = (2- v)(l + v)/(nE), G2 = vel + v)/(nE) in (24).

In the text to follow, we calculate the right hand part of (24), i.e. quantities fuel, A and
the limits.

A. Transversely isotropic solid
The derivation is based on considering two dual systems of loads (Fig. 2) and using

the reciprocity theorem. We first consider the systems of loads related to the opening mode
displacements and derive the expressions for KI •

In the first loading system, a point force Qz is applied at an arbitrary point (x, y, z) in
the positive z-direction, producing a normal displacement discontinuity [u?] (to be found).
In the second loading system, two equal and opposite point forces N normal to the crack
are applied at the points (xo,O, ±0) of the crack, producing z-displacement component u;
at the point (x,y,z) (given by (1». The reciprocity theorem states that

(25)

yielding

(26)

where the functionj; (Zk) is defined by (8).
Normal displacement discontinuity [uf] due to a point force (Q" Qy) applied at (x, y, z)

in the direction parallel to the crack can be found in a similar way, by considering a dual
problem: a pair of two equal and opposite normal point forces N is applied at the crack
faces at the points (xo,O, ±0) and produces the displacement components u'~, u;v at the
point (x,y,z) (given by (2». This yields

2 l 2 Y J[uf']=-QyHIm L-k-lj~(zk)'
n k~] mk-

(27)

(28)

withj;(zk) defined by (9).
Substituting (26)-(28) into (24]) and calculating the limits yields K, due to Qz, Q" Qv:
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(29)

where two elementary functions gl_ix,y, Zk) are introduced:

II 1[II 1 (-)1/2JV 1 Zv 1 t
gl = -, g2 = -= ~- - -----;sarctan -I

R 2 t R 2 V t 2

and the following notations are used:

(30)

(31 )

(32)

We now consider the systems of reciprocal loads related to the tangential displacement
discontinuity L1 = [u,] + i[uvl and derive L1 and K1b KIll due to a point force (Q" Q" Qz)
applied at an arbitrary point (x, y, z). In contrast with straightforward calculations for the
mode I, this case involves some mathematical subtleties discussed in Appendix B. The
results are as follows.

The discontinuity L1 due to a point force Qz and to a point force (Qx, QJ, both applied
at the point (x, y, z), are:

Q. - ~ ,,-, ~ mk [- 7 G2 . JL1 . - QzHfl U L. (- 1)- f2(~k)+ G f3(Zk)
n k~ I mk- Yk 1

H'I! (7 2 1 { [- G, JL1Qx+L1Q,=-~- L --=-=-1 - fl(zd+G-f~(Zk) (Qx+iQ,)
n k~ I mk 1

+ ~5(Zk) + ~~ f6(Zk) J(Qx - iQJ}+ ~ {~I (Z3) - ~/~(Z3)J(Qx + iQy)

+~5(Z3)- ~~f~(Z3)J(Qx-iQy)} (33)

where the functionfl_6 are defined by (8)-(13).
In order to find mode II and III SIFs due to (Q" Qy, Qz), we substitute (32) and (33)

into (242) and calculate the limit. This yields:

(34)
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x (35)

where the functions 93-6(x, y, Zk) are introduced:

9, = ~ [~arctan (f)I'2 - lfi ]
t ,,/ t 2 2 + t

vI: {3 [(/0)1/2 (t )Ji2] I}
94 = -t- t 1- ---: arctan T; - 1

2
--t--t

I [ I (t)I/2 y!l;]96 = - -= ,,---- arctan - -- - --
t !-t- II I)+ty -

and notations (31) and (22) are used.

(36)

(37)

(38)

(39)

B. Isotropic solid
Results for the isotropic solid can, in principle, be obtained from those for the trans­

versely isotropic solid. This, however, requires calculation of non-trivial limits. Alter­
natively, the case of the isotropic solid can be analyzed independently, following the same
procedure as the one for the transversely isotropic case and using (14)-(17) and (24). The
results are as follows.

For the normal displacement discontinuity:

(40)

Q,(I+v) {1-2V[Z (h) p2XO (f)12][ufx] = . 2 Re -_- -arctan - - -_-arctan-
In E q R I R j s 2

(41)
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Qv(I +v) {I ~2v [ z ( h) p2Xo (:5)1i2J[u¥'] = ' 1m -_- -arctan - - -_-arctan-
][2 E q R I R l S 12

For the tangential displacement discontinuities:

AQ,+AQ = ~7; {[(2-V)Il(Z)- 2=/4(Z)J(QX+ iQy) +I8(Z)(Qx- iQJ

+ ~ Lh(z)(Qx + iQJ -II o(z)(Qx - iQ1 )]}

where allf(z) functions are defined in Section 2,
The SIFs for all three modes are:

where the functions g711 (x, y, z) are introduced:
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(42)

(43)

(44)

(45)

(46)

(47)

(48)

I {z [ 2z
2

I, J z I (f)I/2}= -- - 2 I-v --+ -~- + - I-2v --arctan -
g8 t R 2 ( ) R 2 II +/2 (II +/2 )(12 +t) ( ) )tl

l
12

(49)

I [z ( 2z
2

12 ) Z I (f)1i2Jg9 = -= - 2v- -7 + -I-I + I 1)(1 t\ +(l-2v) 17/arctan -I-
t R 2 R- 1 + 2 ( 1 + 2 2 + tJ V til 2

(50)
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Fig. 3. Dimensionless stress intensity factors KO,IUII) = 4]'[2 fix' 'Q, I K". I 1.1 II I along the crack edge
due to a concentrated force Q, applied at the point (x = - I ;y = 0;::) for several values of ::.

Poisson's ratio v = 0.3.

3z
2

3 (/,)1/2 (t )1/2]- . . +(1-2v)- --"- arctan--
(l1+/2)(l2+ t )2 t t 12

(
/2)1/2 ('l)1/2 I, ( 2 'l)+ 3(1-2v) ~ arctan - - --- 1+ -- --_
t 12 11 +12 2-vl l -t

(51 )

(52)

and 11,12 , t and R are defined by (22) and (31).
The results (45)-(47) for SIFs are illustrated in Figs 3, 4 and 5.
An interesting observation, that may seem counterintuitive, can be made. If the point

of application of Q is in the plane of the crack (outside of the crack), then, as follows from
(45)-(47), the Qz (or Q" Qy) component of Q does not generate any mode I (or mode II,
III) SIFs. This is best explained via the reciprocity theorem. By symmetry, mode I crack
opening displacement does not generate any U z displacement in the plane coplanar to the
crack. Therefore, Qz produces no normal crack opening displacement and, hence, no K j •

The result related to the tangential to the crack can be interpreted in a similar way.
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4, SPECIAL CASES

Several special cases are considered here: the important case when tractions are applied
at the crack faces and the case of point forces applied above the crack front line. For these
configurations, solutions are partially available from the earlier literature (for the symmetric
arrangements of two equal and opposite point forces). We recover these solutions and
cover the more general asymmetric case when only one point force is applied.

A. A point force (Q" Qy, Qx) is applied at one of the crack faces (z = 0, x < 0)
The results for SIFs are:

[

,'J 1 '0l .1-2v 1/' I ,c I ..j-x
~ Qx Re . +Ql,Im . +Qc . ---.

8n..j2(2-v) (-X+IY) . (-X+IY) 2n2 x 2 +y2

I -J -x [ ( 2v x
2

- /) 4v xY l
-J ) Qx 1+----

0
--

1
+Qy----,--J

2n~ x 2 + r 2 - v r + r 2 - v X" + r

1-2v

1-2v

(53)

B. Two equal and opposite point.f(Jrces are applied at crack faces (z = ± 0, x < 0)
In this case, the results (53) simplify to the following expressions:

(
2v X

2
_V

2
) 2v 2xv

Qx 1+--,-'0 +Qr--o-~'~
2 - v x' +y C 2 - v x" +Y

2v 2xv (2V x
2

- V2
)Q--'-+Q 1----'

, 2 - V x 2 +y 2 l 2 - V x2 +y2

(54)

The expressions (54) recover the results of Kassir and Sih (1975) and Bueckner (1987).
Note an interesting feature of the solution (54). At v < 2/7, the value of IKIIII due to

Qr is maximal at the point y = 0 (as intuitively expected). However, at v > 2;7, the maximum
of IKIll I is reached at two points of the crack front (symmetrically located with respect to
y = 0) and it substantially exceeds the value of IKIll I at y = 0 (the curve:: = 0 in Fig. 4
corresponds to v = 0.3, close to the transitional point 2;7, and, therefore. has a plateau­
like maximum).

Another interesting observation is that KII due to Qr is very close to Kill due to Qx
(they coincide exactly when the point of application of the force is z = 0).

C. Two equal and opposite point forces Qz are applied ahove and below the crack edge at the
points (x = 0, ± z)

The results drastically simplify to the following expressions:

(55)

This formula recovers the result of Kassir and Sih (1975),
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5. INTERACTION OF A HALF-PLANE CRACK WITH DIPOLES

4113

From now on, the solid is assumed isotropic. This assumption is made in order to
avoid making formulas, that are already lengthy, even lengthier. The case of the transversely
isotropic solid (with the crack parallel to the plane of isotropy) can be analyzed similarly.

A system of two equal and opposite point forces Q =(Q,,, Q,., Qz) and -Q with points
of application lying on the line of Q and separated by distance h, in the limit of Q --> oc and
h --> 0, is called a dipole. The limiting value of the product lim Qh == P is called dipole's
intensity (assumed to be finite) ; it is taken to be positive (negative) if the forces are directed
away from (towards) each other.

The solution of K[ can be obtained from that for the point force by taking the
directional derivative of (45) in the direction of Q. Since Qk = Qak (k = x, y, z), where ak
are directional cosines between the x, y, Z axes and the dipole line, we have:

(56)

where F< == fi Regs, Fy == fi Imgs, Fz == fig7' Note that (56) is invariant with respect
to the choice of direction along the dipole line (it is quadratic in ak)'

Calculations yield the following expression for K[ :

pfi
KIev) = c{axRe[axPI +arP2+azP3]+ayIm[axPI +a)P2+ azP3]

4n2 (l-v)y'2 . ,

+azla,p4 +ayps +azpc,J] (57)

where the elementary functions P[_6(X, y, z) are given in Appendix C.
Similarly, the solution for KII has the form

(58)

P-// I
KII(y) =, r::; Re {axlaxCPlo - PII) +a,(PI2 - P13) +az (PI4 - PIS)]

4n-(l-v)y' 2

+ iaAaxCPlo +PII) +ay(Pl2 +P13) +az(PI4 +PIS)] +azlaxP7 +ayps +aZpy]) (59)

where the elementary functions P7IS(X, y, z) are given in Appendix C.
The solution for Km is obtained from the one for KII by omitting the multiplier l!(l - v)

and replacing Re by 1m in (59). Figure 6 illustrates these results.

Coplanar case. If the point of application of the dipole lies in the plane of the crack,
the results simplify considerably (although calculations require finding non-trivial limits of
the type 0/0).

Two cases should be distinguished: if the point of application of the dipole lies outside
of the crack face, then II = 0, 12 = 2x; if the dipole is applied on one of the crack faces, then
I[ = - 2x and 12 = O. In the first case (the second case can be analyzed similarly), the results
are as follows;
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P(I-2v) I {" [2XV 3 ( , (2X)1:C ( 1 )L2)JK] (y) = 2 ,,/. IX: + IX~ - lXxIX, ~ - 21m {- --=- arctan ",:
8n (I-t) Rovx R o R o { ~.\

I [2X
2

3 ((2X)1:2 ( 1 )) 2)J}- -(C(~ - IX~) ~ - 2 Re {C~_ arctan 7-
2 R o R o t ~.\

(60)

P I {[ 4V
y2 J 4VXl'}KII(v) = IX. c(, -2-v+ -- -IX["-·

, 4n 2 (I-v)(2-v) R~Jx" . R~' R~
(61 )

(62)

where R~ = x 2 +l.
In particular, for a dipole in the z-direction,

(63)

Note a similarity between (63) and the result for a half-plane crack interacting with a
coplanar infinitesimal dislocation loop with Burgers' vector b in the z-direction (Rice
(1985b)) :

(64)
bE I

K] =, , .
8n"(I-v") R~.jx

(Rice's result differs from (64) by a multiplier I!~, due to a different definition of SIF.)
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Comparison of (63) and (64) provides the equivalence relation between the dipole intensity
and the magnitude of Burgers' vector: P = bE/[(1 +v)(I-2v)].

6. INTERACTION OF A HALF-PLANE CRACK WITH A CENTER OF DILATATION

Three mutually orthogonal dipoles of equal intensity P applied at the same point
constitute a center of dilatation of intensity P. Such a stress source may be used to model
a lattice vacancy, an interstitial atom or a foreign particle of the spherical shape.

Note that the stress field (and, therefore, SIFs) induced by such a source is identical
to the one generated by a pressurized spherical cavity of radius b in an elastic continuum
outside of the cavity (Lame problem). The equivalence is established by the following
relation between the pressure (J on the cavity and the dipole intensity:

l-2v
(J = P.

2n(l-v)b3
(65)

We consider a center of dilatation of intensity P applied at the point x, y, z and formed
by three dipoles in mutually orthogonal directions characterized by directional cosines
(an ay, az), (f3" f3y, 13z) and (Yn "r'y, Yo)' The mode I SIF induced along the crack edge has the
form:

(66)

Since iX, p, yare mutually orthogonal unit vectors, the expression in parentheses constitutes
the nm-component of the unit tensor, i.e. it equals Kronecker's delta bmw Thus,

(67)

This result is independent of the orientation of the triad iX, p, Y (so that the dipoles can be
assumed, for example, to be aligned with the x, y, z directions). It is this invariance that
justifies the concept of a center of dilatation.

Calculating (67) and doing similar analysis for K]b Kill yield the following results

(68)

in terms of elementary functionsp9(x,y,z) andp16IR(x,y,z) given in Appendix C.
These results are illustrated in Fig. 7.

Coplanar case. In the case when the center of dilatation lies in the plane of the crack
z = 0 (and is outside of the crack),

P(l-2v) I
K](y) =) , KII = Kill = O.

4n-(l- v) Ro.j x
(69)

Note that the result in (69) is twice the value of K, due to a coplanar dipole in the z
direction.
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due to a center of dilatation located at the point (x = I ;y = O:~) for several values of :c. Poisson's
ration v = 0.3.

7. INTERACTION OF A HALF-PLANE CRACK WITH A MOMENT

A pair of equal and opposite point forces Q and - Q, with the lines of action separated
by the moment arm h and applied at the points where h intersects these lines, in the limit
of Q ---> 00 and h ---> 0, constitutes a concentrated moment. The limiting value of Qh (denoted
by M) is the intensity of the moment.

The SIFs due to a moment can be obtained by differentiating the results for the point
force in the direction normal to the force, i.e. along the moment arm h. Denoting the
directional cosines of h by f30 f3n f3z and taking into account that Qk = Qak (k = x,y,z),
where ak are directional cosines of the force direction, we obtain, for the mode I SIF:

(70)

where functions F" F n Fz are defined as in (56). Calculations yield the following result in
terms of the elementary functions PI--6(X, y, z; Yo) given in Appendix C:

Mfi fKI(y) = J - 1.. ax Re [f3xP I + f3yP2 + f3zp)] + IX v 1m [!JxPI + f3,P2 + f3zp,]
4n-(l-v)J2 .'

+ azl!JxP4 + f3,Ps + f3zP6]}' (71)

For K Il , the result can be obtained from (70) by replacing functions Fn by H n (defined as in
(58)) and taking the real part of the sum (in accordance with (41)) :

_ M.Jll f
KIl(y) - J f)Re laAf3xCPIo -PII)+f3v(PI2 -PI)) +f3z(PI4 -PIS)]

4n-(l-v)v 2 .

+ iay[f3'(PI 0+PII) + !Jy(PI2 +P13) + f3z(P14 +PIS)] + az[f3xP7 + f3yps + /JzP9]}' (72)
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The solution for KIIJ is obtained from (72) by omitting the multiplier 1/(1- v) and replacing
Re by 1m.

Figure 8 illustrates the results.

Coplanar case. If the moment M is applied in the plane of the crack (outside of the
crack), the results are as follows:

M(1-2v) 1 { lxY 3 ( ? (2X)I/2 ( 1)1 2)JK1(y) = -----~ -(rxJ3x +'Y.J3y) ---1m t- -=- arctan2~·
8n2(1-v) R6Jx "' . R6 2R6 t x

(73)

l xy 3(1-v) ((2X)J.2 ( 1 )1:2)J}+(rxyf3z-rxJ3y)(1-2v) (1-3v)~6 - 2
R

6 1m t
2 -j arctan 2x

(74)
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M 1 {[ 4vxv ( 4V
V2

)]K]][(y) = , . f3z -ax~-' +a, 3v-2- _oJ-

4n"(2-v) R~.jx R~' R o

[
xy 3 ((2X)I/2 ( t )1 2)]-(azf3x-cxxf3z)(l-2v) ~--2Im t2.~- arctan-
R o 2R o t 2x

(75)

8. INTERACTION OF A HALF·PLAi'JE CRACK WITH A CENTER OF ROTATION

Center of rotation of intensity M is formed by two mutually orthogonal force pairs
applied at the same point and producing moments of the same intensity M in the same
direction.

The elastic field produced by such a stress source (and its impact on SIFs) is identical
(outside of the sphere) to the one in the so-called Robin's problem, where a rigid sphere of
radius b embedded into an elastic continuum is subjected to a rotation 8. This equivalence
is established by the following relation between the rotation 8 and the moment M:

M
8=-­

8nCb'
(76)

where G is the shear modulus.
Superimposing the result (70) and the one obtained from (70) by replacements

(13" f3n f3J --->(ax, ay, az), (cxx,:Xy, cxz) --->( - 13" - f3Y' - f3J yields:

(77)

or, since the expressions anf3m- amf3n in (77) constitute the x, y and z components of the unit
vector of the moment direction,

(78)

An important observation is that Kr is expressed solely in terms of vector M and does not
depend on the exact orientation (in the plane normal to M) of the two force pairs that
constitute M. It is this invariance that justifies the concept of a center of rotation.

K] can be further expressed in terms of the elementary functions PI 5:

Similarly, for Ku we have:
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due to a center of rotation with the axis of rotation in the x-direction (produced by two pairs of
forces, in the z and y-directions) applied at the point (x = 1 ;y = 0; z) for several values of z.

Poisson's ratio v = 0.3.

The solution for Km is obtained from the one for Kn by omitting the multiplier 1/(1-v)
and replacing Re by 1m in (80).

Figure 9 illustrates the results.

Coplanar case. If the point of application of the center of rotation lies in the plane of
the crack z = 0 (outside of the crack),

(81)

I 1 { 2yKnCv) = r:.. 2(1- v) (1 +3v)My + - [(1- 2v)(1- 3v)
4n2 (l-v)(2-v) R5y x . R5

3(1-v)(l-2v) [ ((2X)1/2 ( l )1 /2)
-2v](xMx +yMy)+ R5 MyRe (2 T arctan 2x

( (2X)I!2 ( t )1!2)J}- M x 1m (2 T arctan 2x

I I { 2yKm(y) = r:.. -(4-7v)M,+-,(l-4v)(yM,-xMy)
4n2 (2-v) R5y x Ro

3(1-2v) [ ( 2 (2X)I/2 ( t )1/2)+ M x Re ( -=- arctan-
2R5 ( x

( (
2X)I/2 ( l )1!2)J}+My 1m (2 T arctan 2x .

(82)

(83)
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9. DISCUSSION

Interaction of a crack with several stress sources (or a continuous distribution of them)
can, in principle, be analyzed by a summation (or integration) of the results for SIFs over
all the sources. However, this may lead to either very lengthy expressions or to integrals
that cannot be expressed in any standard functions.

If the system of forces is distributed over a volume V, which is small, as compared to
its distance from the crack, then, to within values of higher order, the results can be obtained
in a much simpler way: the impact of the force system can be reduced to the ones of the
resultant vector, resultant moment and three mutually orthogonal dipoles, and the results
of the present work can be utilized. Such a reduction is outlined, for example, by Lur'e
(1964); see, also, Karapetian and Kachanov (1996).
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APPENDIX A

As mentioned in the Introduction, it is simpler to obtain the solution for the half-plane crack independently,
rather than to apply a limiting procedure to the solutions for a circular crack as the crack radius a -> 00.

Nevertheless, the link between these two configurations can, in principle, be established, although it involves
exceedingly difficult calculations of indeterminate ratios. Such a linkage is illustrated here on one of the simplest
examples: the derivation of (45) for the mode I SIFs for a half-plane crack from the results for a circular crack.

The mode I SIFs for a circular crack due to arbitrary point forces (Q" Qy, QJ applied at a point (p, <p, z) can
be represented in the form (Karapetian and Kachanov (1996)):
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jQX) IRe/'j(a
'

_ tD 1/2

K,(r/Jo) = Qy Im/,
Q, 4n'(I-v)j2t; I,

where the elementary functionsfi.,(p, r/J, z; r/Jo) are as follows:
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(AI)

a (s)](I - 2v) arctan
sea' -tD'I' (lj ~a')I;'

(A2)

I [ 2z' p2 -Ii]I, =- 2(I-v)+----
R' R' Ij-if

and the following notations are used:

R 2 = p2+a'-2pacos(r/J-r/Jo)+z' = qq+z', s' = a2_apeil¢-¢o), q = pei¢_aei¢o

2/, = J(a+p)2+ z2-J(a-p)'+z', 2/, = J(a+p)'+z'+J(a-p)2+ z2

We use the following results on calculation of four limits (Fabrikant el al. (1993)) :

(
a

2 _I') (/2_a') ~lim __I = JX'+Z2_ X == II, lim _2__ = Vx'+z'+x == I,
(I-Hf) a u..... OO a

(
S2) (a2 _p2)lim - = -x-i(y-yo) == I, lim -- = -2x

a ..... oo a a_x, a

(A3)

(A4)

(A5)

where Yo is the coordinate of a point of the edge of the half-plane crack which corresponds to the point r/Jo of the
edge of the circular crack. Without loss of generality, we can assume Yo = O.

Since p ei~ = x +a+ iy and a ei~o = a+ iyo = a, the values of Rand q, as given by (A4), take the form :

We now rearrange (A2) as follows:

R=JX'+y2+ Z', q=x+iy== -I. (A6)

I [z ( 2z2 (p2-a2)la+(a'- tDla) zljla
2

I, = -= - 2(1-v)- - + +-------"---------
q R' R 2 (ll-a')la+ (a2 -tDla Wj-a2 )la+s'la)«(lj-a2 )la+ (a2-!Dla)

I ( s(fi )]- (1- 2v) arctan
(Slfi)(Ja2 -/f/fi) Jlj-a'ifi

so that 1~~/, yields the function gs given by (49). Similarly, it can be shown that 1~ I, yields g, given by (48).

Thus, the solution for a half-plane crack is recovered.

APPENDIX B

Derivation of the formulas (32) and (33) is given here. It follows the same general logic as the one in the
work of Karapetian and Hanson (1994). We first rewrite (6) in the form:

Uz = Re(AT) = (l/2)(AT+AT), (BI)

where A is a complex-valued coefficient. The displacement u, at the point (x, y, z) due to a pair of equal and
opposite point forces T, applied at the points (xo,O, ±0) of the crack faces is:

U;· = TJI(2)(A+A) = T, Re(A).

The displacement u, due to a similar pair of forces Tv is :

U;· = iTJI/2)(A-A) = -Tv Im(A).

(B2)

(B3)

')enoting the tangential displacement discontinuities in the x and y directions due to a point force Q, applied at
the point (x, y, z) by [uq,j and [u~,j, we obtain, from the reciprocity theorem,
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LlQ, == [u~]+i[u~,] = Q,[Re(A)-ilm(A)] = AQ,.

(B4)

(B5)

A comparison of equations (BI) and (B5) shows that the tangential displacement discontinuity at the point
(xQ, 0, ±0) due to Qz applied at the point (x,y, z) can be expressed in the form (32).

Derivation of (33) is done in a similar manner. We rewrite (7) in the form :

ux+iu,. = B,T+B,T (B6)

where B, and B, are the complex-valued coefficients. The displacements u" u, at the point (x, y, z) due to a pair of
equal and opposite point forces T, applied at (xo, 0, ±0) are: .

u;, = T, Re(B, + B,), u;. = TxIm(B, +B,),

and the displacements due to a pair of forces Ty are:

(B7)

u;. = T,. Re [(B, -B,)z] = - TyIm(B, -B,), . u~, = T,. 1m [(B, -B,)r] = T, Re(B, -B,). (B8)

Denoting the tangential displacement discontinuity in the x and y directions due to force Qx applied at the point
(x, y, z) by [u~,] and [u~,], we obtain, from the reciprocity theorem:

(B9)

or

Displacement discontinuities due to Qy are obtained in the same way:

[u~,] = Qy Im(B, +B,), [u~,] = Q,. Re(B, - B,)

or

Hence,

(BIO)

(811)

(812)

(813)

A comparison of (86) and (813) shows that the tangential displacement discontinuity at the point (xo, 0, O±) due
to the point force (Q" Qy) parallel to the crack and applied at (x,y, z) can be expressed in the form (33).

APPENDIX C

Expressions for the functions Pi = Pi(X,y, z) entering the solutions in the main text are given here.

P, = _1_~(Jl,g,) =~[(2X + ~1__ ~)(2(l-V)-2z' +~)- 4xz'-~J
Jl, ax 7R' R' I, +1, t R 2 I, +1, R 4 (I, +1,)3

Z [( 1,+1,1,+1, 4x 2XJ+ 1- 1-2v)~--~_-+~-+--_
7(1,+1,)'(1,+1) I, t 1,+1, I,+t

1-2v [ (1,)'1' (7)'12 12 J+-- 3 -=- arctan - - --_
2l'z t I, 1,+1

I a ~ { Z [(I 2iY) ( 2z' I,) 4iVZ'JP, = --(.J/,g,) = i ~ -= - - 2(l-v)- - + ~-- + -'-
Jl, oy 7R' 1 R' R' I, +1, R 4

z (I I) 1-2v [ (/,)1/' (7)'1
2

I, J}+ _ -- + - - -- 3...::. arctan - - ---
t(l,+I,)(I,+1) 1,+7 7 27'z 7 I, 1,+7
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I 0 I [4Z' ( z' ) ( 2z' I,) ( 2z' I,)P3 =--(Ag8) =- - I-~ - 1--+-- 2(l-v)--+--A oz fR' R' R' R' I, +1, R' I, +1,

+ _4Z_'_X_J _ I [2(1- v) + _1, 4_z'_ _ -_2Z_'__J
(I, +1,)3 1(/, +1,)(/, +1) I, +1, (I, +1,)' (I, +1,)(1, +1)

I 0 /I I [2Z' (I 2) (2X I) ( 4z' I')JP4=--(y'/,g,)=~-- ~---- - ~--- 2(l-v)+----A ox R' I, +1, R' (I, +1,)' R' I, +1, R' I, +1,

I a /I 2y [ 4z' I, J
P, = ----r="(y' I,g,) = - ~ 2(I-v)+ - - -I+1

y'/, uy R 4 R'"

I 0 J [( 2z' I,) (I, 2Z') 4z'(R' -z') 4z' x JP6 =--(Ag7) =- 2(l-v)+---- --"--- + +---A oz R'z R' I, +1, I, +1, R' R 4 (I] +1,)3

I 0 /I Z [( 2z' I,) (J 2x I) 4z' X 4z' JP7=--(y'/,g9)=- 2v--+-- --~---+-+---A ox R'l R' I, +1, 1 R' I, +1, R 4 (I, +1,)'

4123

v(I-2v)[ 3 (1)'12- --- ---arctan -
2 -v 21' jti; I,

Z ( 21 3(1, + I))J1+--+---
II, (I, + 1)2 I, +1, 21

I a /I .{z [( 2z
2 I,) (2iY I) 4iYZ'JP8=--( l,g9)=1 - 2v--+-- ~-- ---A oy v R'l R' I] +1, R' 1 R 4

v(l-2v) [3 (1)'1' z ( 3(1o+I))J v 4z---- ---arctan - - 1+--- -
2-v 21'J/i; I, 11,(1,+1)' 21 2-v (I, +1,)(1,+1)3

3 (1)'/' z [ 1,+1, I, I, J}
-(l-2v)~arctan -I + -I (I 1)(1 7\ (l-2v)-2- - ~ - -I-

2l'y'1l] , I, ,+, ,+I) I I ,+1

I a r- I [( 2z' I,) ( 2z' I,) 4z' ( z' ) 4z' x JP9 =--(y'/,g9) =- 2v--+-- 1--+-- -- I-~ ----A OZ R'l R' I, +1, R' I, +1, R' R' (I, +1,)'

1a /I I [( 2z' I,) (2X I) 4z
2

x 4z' Jp]o=--(y'/,g,o)=- 2(2-v)--+--- ~+-- ------A ax 2R' R' I, + I, R' I, + I, R 4 (I, + 1,)3

v J { 3 [ (I )]/' (1)'/ 2 I ( 21)J+-- (l-2v)~ 5.2 arctan - --'- 1+--
2-v21 21' I I, 1,+1 1,+1,

3z' (/,+1, 4x 4X) [ I,+ 1---+--+- + 2v---
(1,+1,)'(/,+1)' I 1,+1, 1,+1 1,+1,

I 3 I 2x J
- 1(1,+1) - 1(1, +1,) + (I, +1,)(/,+1) + (I, +1,)(1,+1)'
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1 a 1 {2Z' x ( 4z' I,) 4z' ( Z2 )PI' =~-(fig,d=- - 2(I-v)--+--- ---- 1+-fi ax 2r R 4 R' II +1, (/1 +1,)' R'

3 [ (/,)1 /2 (7)1/2 I, ( 27)J I, ( 2 I
+(1-2v)li 5 f arctan T; -1,+7 1+ /1 + 1, -1,+1, 1+ 2_ vl,_7

(
2 1 )[( Z')( I,) 2Z'( Z')J I [( 11+1,+ ---- 1+- 2v--- +2v-- 1-- + 2v 1----
7 11+1, R' 11+1, R' R' (11+ 1,)(1,+1) I

I a II Y ( 4z' I,)
PI' = II-a,(...;I,glo) =- 2(2-v)--+-1+1

v II Y R 4 R' I ,

v i [ 3( (1,)1/2 (1)'1' I,) Z'I (6 5)+-- (l-2v)- 5"'::' arctan - --"- - -+-
2-v 21' 21 1 I, 1,+1 (I, +1,)(1,+1)' 1 1,+1

I a ~ i {2Z' (I iY ) ( 4z' 12 )PI3 = lIo(.j/,gld =- - -::-- 2(l-v)--+-I-1
V II loy 27' R' 1 R' R' 1+ ,

4 ( Z4 I) 3 [ (I )1/' (1)1
1
' I J_ -:: 2v- - - -'- -(1-2v)---: 5 ~ arctan _ _ _'__

1 R4 /1+/, 21 1 I, 1,+1

3z' (2 1) I ( I,) 2 Z2 (2 I)+ -+- +2v- 2-- + ---
(11+1,)(/2+1) 7 1,+7 1,+1 1,+1 2-v(lI+12 )(I,-1) II /1 -1

V Z2 [ 21 2(1, + I) 2/1 J}+ --5+--+-
2-v (II +1,)(/,+1)' 1,+1 I, 1,+1

6z' [2Z' z' J
- (I, + 1,)(1, + I) 1- (I, + I,)' - (II + 1,)(1, + I)

Z'I [ 3/, 8z' IOZ']}
- (II +1,)(1, +1)' 4+ II ;1, - (II +/

2
)' - (II +1,)(/, +1)

1 a ~ 1{z ( 2z' I,) (4Z' I, )P,s =~-(.J/,gld=- - 2--+-- -----2(1-v)fi az 27' R' R' II +1, R' I, +1,

z ( 2z
4 I,) 4zx ( z' 2 I)+--- 4v------ +~- 2+-+--

(/1+ 1,)1, R 4 1,+1, (/ 1+1,)3 R' 2-v/ l -l



Interactions of half-plane crack 4125

[
1 (-)1,0+3(1 ~2v) Farctan f ,.

y til '

3z [ I, 4z' 2z' J
- (11+1,)(1,+1) 2+ II~/, - (11+ 1,)' - (11+ 1,)(1,+1)

I [ I, ( 2z' I, 411X) 4Z'J
PI6=- --- 2(l-v)+---"-+--- -(l-2v)-

R'z I, +1, R' I, +1, (II +1,)' R'

+_z_'-[~(2(1-V)-2z' +_I,__~)
1(1,+1,) R' R' 1,+1, (1,+1,)'

1 ( I, +1, 4x 21, )J+ 1-(l-2v)--+----+-
(1,+1,)(1,+1) I, 1,+1, /,+1

1[( 2z' I,)(I t) 2z't 2z' JPI7 =- 2(2-v)--+--- ------ +----~
R' R' I, +1, 2(1, +1,) R' R 4 (I, +1,)3

v I { 31,--- (I-2v) -
2- V2t' (I, +1,)(1, + t)

3z't [I, +1, 4x 4xI+---+---j---
(I, +I,)'(I,+t)' t I, +1, I,+t

5(1, + I')J (I, Z') [t 3 t
+ 3(1,+t) - 2v- I, +1, - (I, +I,)(I,+t) (I,+t)' - I, +1, + (I, +I,)(I,+t)

4z' ( Z') (2 I) [( z' ) ( I,) 2z' ( z' )J--- 1+- + ---- 1+- 2v--- +2v-- 1--
(I, +1,)1 R' I I, +1, R' I, +1, R' R'

V 2z' (X 4x 4x )J}
- 2-v (I, +1,)(1, +t) 1- t: + I, +t + I, +1, .


